
Deterministic Compilation of Temporal Safety
Properties in Explicit State Model Checking

Kristin Y. Rozier and Moshe Y. Vardi⋆

Rice University, Houston, Texas 77005,{kyrozier, vardi}@cs.rice.edu

Abstract. The translation of temporal logic specifications constitutes an essen-
tial step in model checking and a major influence on the efficiency of formal
verification via model checking. We devise a new explicit-state translation of Lin-
ear Temporal Logic to automata for the class of LTL specifications that describe
safety properties, arguably the most used formal specifications in real-worldsys-
tems. By exploiting the inherent determinism in safety specifications, we can
build deterministic Promelanever claims that accept only the bad prefixes of
the safety specification. In contrast to previous works, we focus on compilation
to never claims rather than simply automata and measure Spin model-checking
time separately from compilation time and automata size. Anextensive experi-
mental evaluation over a space of configurations demonstrates that our new trans-
lation consistently results in better model-checking performance, for a large array
of benchmarks, over the best current translation.

1 Introduction

In linear-time model checking, the negation of the temporalspecification is translated
into a nondeterministic Büchi automaton, combined with the system model, and then
checked for nonemptiness [33]. The model checker searches for a lasso-shaped coun-
terexample tracein this combined model, a trace that starts at an initial system state
and reaches a cycle that contains an accepting state. The explicit-state translation of
Linear Temporal Logic (LTL) formulas to Büchi automata constitutes an essential step
in explicit-state linear-time model checking and has a major influence on the efficiency
of model checking [10]. Consequently, this topic has received a significant level of at-
tention over the past two decades and there are many available tools; see [27] for an
extensive survey. Most of that research has focused on minimizing the size of the gen-
erated automata. The rationale was that minimizing the sizeof the automaton would
minimize the size of the space in the product of the system model and the automaton
that the model checker must search. Yet this heuristic approach has no experimental
evidence that would demonstrate its efficacy [32]. In fact, the extensive experimental
investigation reported on in [27], which focused onsatisfiability checking, a special

⋆ This research was supported in part by NSF grants CNS 1049862and CCF-1139011, by NSF
Expeditions in Computing project ”ExCAPE: Expeditions in Computer Augmented Program
Engineering”, by BSF grant 9800096, by a gift from Intel, andby the Shared University Grid
at Rice funded by NSF under Grant EIA-0216467 and a partnership between Rice, Sun Mi-
crosystems, and Sigma Solutions, Inc.

case of model checking, shows little correlation between automaton size and model-
checking time. It is argued in [9] that larger automata may result in less work for LTL
model checking. In this paper we revisit the translation of LTL formulas to automata,
which we callLTL compilation, specifically focusing on model-checking performance.

We concentrate on model checkingsafety properties, which assert “something bad
never happens” [1]. Safety properties are the most often used formal properties in prac-
tice, capturing the desired behaviors of a wide variety of real-world systems, such as of
fault tolerance [11] and hardware resets [7]. Safety properties can also describe most
intended properties of real-time systems, since responsesare usually required within
bounded intervals [15].

Intuitively, “something bad” only needs to happen once in a computation for the
property to be violated. Thus, a violation of a safety property can always be witnessed
by a finite prefix of a violating infinite trace. Rather than search the system model for
a violating infinite trace, we can search the system model forthis bad prefix. This in-
sight forms the basis for an alternative automata-theoretic approach for model checking
safety properties, proposed in [20]: construct adeterministicautomaton for the lan-
guage of bad prefixes, take its product with the system model,and then search for
an accepting finite trace. A disadvantage of this approach isthat while the translation
from LTL to nondeterministic Büchi automata is, in the worst case exponential [34],
the translation from safety LTL formulas to deterministic automata for bad prefixes is,
in the worst case, doubly exponential [20]. Perhaps becauseof this additional blow-up,
this approach, which we refer to asdeterministic compilation, has yet to be seriously
explored.

There has been recent evidence that deterministic compilation may be a viable
approach in spite of the possible additional exponential blow-up. Deterministic com-
pilation proved to be effective for SAT-based model checking [2] and explicit-state
hybrid-systems analysis [26]. Determinizing finite automata representing safety for-
mulas has been correlated with smaller system model/automaton products even without
minimizing the formula automaton [21]. Intuitively the product–system model times
automaton–is simpler when the automaton is deterministic,as nondeterminism in the
product stems solely from nondeterminism in the system. Intuitively, in the standard
approach the search algorithm has to find both a counterexample trace in the system
and an accepting run of the specification automaton. This second search is not needed
when the specification automaton is deterministic, as it hasa unique run on a given
input word. (It has been argued in [30], though without evidence, that “more determin-
istic” compilation may be an advantageous approach.) Recent work on deterministic
compilation in the context of run-time verification demonstrated both that the doubly
exponential blow-up rarely appears in practice, and that the resulting deterministic au-
tomata are often actuallysmallerthan their nondeterministic counterparts since we can
minimize deterministic automata efficiently [31, 11].

The main result of this paper is that deterministic compilation is indeed an effective
approach to explicit-state model checking of safety properties. To demonstrate this, we
build on the theoretical foundations developed in [4, 20]. We show how to use SPOT [6],
the best LTL-to-automaton translator (see [27]), andBRICS Automaton [23], a tool for
determinizing and minimizing finite-word automata, in order to go from a nondetermin-

2

istic Büchi automatonAϕ representing a safety propertyϕ to a deterministic automaton
Ad that accepts the bad prefixes ofϕ. This construction uses the fact that determiniza-
tion of finite-word automata is much simpler than determinization ofω-automata; while
nondeterministic finite automata can be determinized with asimple subset construction
[14], determinization of nondeterministicω-automata requires a complex subset-tree-
based construction [28].

To useAd for model checking, we apply Spin, the canonical explicit-state model
checker [12]. We introduce 26 novel encodings of LTL safety properties as deterministic
automata in the form of Promela (PROcess MEta LAnguage)never claims, describing
behaviors that shouldnotoccur in the system model. We implement these encodings as
an extension of the open-source CHIMP tool1 [31] that creates SystemC monitors for
LTL formulas; our extension, CHIMP-Spin,2 creates Spinnever claims. Our system-
atic empirical investigation of the effectiveness of theseautomata asnever claims also
constitutes a novel contribution since earlier works focused on translation to automata
without considering their encodings asnever claims. We show over a large array of
benchmarks that our deterministic encodings for model checking of safety properties
consistently result in significantly reduced model-checking times over the SPOT encod-
ing. We also demonstrate that the encoding used to representdeterministic automata as
never claims has a significant impact on performance and we identify a single encoding
that dominates all other encodings.

A key point of our approach is that we concentrate on reducingmodel-checking time,
while typical experimental work in LTL model checking measures total time–compile
plus model-checking time, e.g., [9]. Since in real-world applications of model checking,
properties are written once and then checked against a changing system design multiple
times, we find it worthwhile to reduce model-checking time even at the cost of increased
property-compilation time. This choice is particularly pertinent for regression testing:
when the system is changed to fix a bug or add a new feature it is necessary to re-
check all properties checked earlier to ensure that previous checks produce the same
results. To streamline regression testing future versionsof Spin should not require a
recompilation ofnever claims for each run of the model checker, even when they have
not changed. Such an adjustment would more accurately reflect industrial applications
of model checking and, combined with our reduced model checking times, reduce the
amortized cost of model checking.

The structure of the paper is as follows. We detail the theoryunderlying our con-
struction of deterministic encodings of LTL safety specifications in Section 2 and de-
scribe our 26 novel constructions of Promelanever claims in Section 3. We then de-
scribe our experimental methodology in Section 4, and present our experimental re-
sults, which demonstrate that we can consistently outperform SPOT, the current best
LTL-compilation tool, in Section 5. We conclude with a discussion in Section 6.

1 http://sourceforge.net/projects/chimp-rice/
2 Our tool extension will be posted online accompanying publication.

3

2 Theoretical Background

We interpret LTL formulas over infinite computations of the form π : ω → 2Prop, where
ω is the set non-negative integers andProp is a set of atomic propositions. We define
π, i � ϕ (computationπ at time instanti ∈ ω satisfies LTL formulaϕ) as follows [8]:

– π, i � p for p∈ Prop if p∈ π(i).
– π, i � g1∧g2 if π, i � g1 andπ, i � g2.
– π, i � ¬g if π, i 2 g.
– π, i � Xg if π, i +1� g.
– π, i � g1Ug2 if ∃ j ≥ i, such thatπ, j � g2 and∀k, i ≤ k < j, we haveπ,k � g1.
– π, i � g1R g2 if ∀ j ≥ i, if π, j 2 g2, then∃k, i ≤ k < j, such thatπ,k � g1.
– π, i � ♦g if ∃ j ≥ i, such thatπ, j � g.
– π, i � �g if ∀ j ≥ i, π, j � g.

We takemodels(ϕ) to be the set of computations that satisfyϕ at time 0:{π : π,0 � ϕ}.
In automata-theoretic model checking, we represent LTL formulas using Büchi au-

tomata. ANondeterministic B̈uchi Word Automaton(NBW) is a quintupleA = (Q,Σ,δ,

Q0,F), whereQ is a finite set of states,Σ is a finite alphabet,δ : Q×Σ → 2Q is a tran-
sition function,Q0 ⊆ Q is a set of initial states, andF ⊆ Q is a set of accepting states.
If q′ ∈ δ(q,σ) then we say that we have a transition fromq to q′ labeled byσ. A run of
a Büchi automatonA over an infinite computationπ = π0,π1,π2, . . . ∈ Σ is a sequence
q0,q1,q2, . . . of states such thatq0 ∈ Q0, and〈qi ,πi ,qi+1〉 ∈ δ for all i ≥ 0.A acceptsπ
if the run overπ visits states inF infinitely often. We denote the set of infinite words
accepted byA by Lω(A). Computations are infinite words over the alphabetΣ = 2Prop.

Theorem 1. [34] Given an LTL formulaϕ, we can construct an NBWAϕ = (Q,Σ,δ,q0,

F) such that|Q| is in 2O(|ϕ|), Σ = 2Prop, and Lω(Aϕ) is exactly models(ϕ).

In the automata-theoretic approach to model checking [33],to check that a model
M under verification satisfies an LTL formulaϕ, we translate¬ϕ into the automa-
ton A¬ϕ and composeA¬ϕ with M, forming the automatonAM, ¬ϕ, which the model
checker checks for emptiness. If there is no accepting run ofAM, ¬ϕ (i.e. the language
L (AM, ¬ϕ) = /0), we have proven thatM |= ϕ.

The automata-theoretic approach can be refined when dealingwith safety proper-
ties. A formula ϕ is a safety formula if its failure can always be witnessed by afinite
prefix [1]; that is, ifπ 6|= ϕ then there there is a finite wordw∈ Σ∗ such thatw ·π 6|= ϕ
for every infinite computationπ ∈ Σω. Herew is called abad prefixfor ϕ. The set of bad
prefixes forϕ is pre f(ϕ). It is argued in [19] thatpre f(ϕ) is a regular language; conse-
quently, we can use automata on finite words for model checking safety properties.

A Nondeterministic Finite Word Automaton(NFW) is a quintupleA = (Q,Σ,δ,Q0,

F), whereQ is a finite set of states,Σ is a finite alphabet,δ : Q×Σ → 2Q is a transition
function,Q0 ⊆ Q is the set of initial states, andF ⊆ Q is a set of accepting states. If
Q0 is a singleton, andδ(q,a) contains at most one state for every stateq and lettera,
then we say thatA is aDeterministic Finite Word Automaton(DFW). A run ofA over
a finite wordw∈ Σ∗ is accepting if it terminates in an accepting state.

4

Theorem 2. [19] Given a safety LTL formulaϕ, we can construct a DFWAd = (Q,Σ,δ,

q0,F) such that|Q| is in 22O(|ϕ|)
, Σ = 2Prop, andL (Ad) is exactly pre f(ϕ).

Therefore, whenϕ is a safety property, we can opt to form an NFW or a DFW
corresponding to¬ϕ instead of an NBW, since we only need to construct an automaton
that accepts the set of finite prefixes that witness violations of ϕ.

A concrete algorithm to construct automata for bad prefixes was given in [4]. Given
a safety formulaϕ, we first form the NBWAϕ. Here we use SPOT [6] for this trans-
lation; we showed earlier that SPOT is the best LTL-to-automata translator [27]. Let
empty(Aϕ) be the set of states inAϕ that cannot appear on an accepting run. SPOT can
compute this set of states and remove them fromAϕ. We now turn this NBW into an

NFW A f
ϕ by re-labeling all remaining states to be accepting. We now have the NFW

A
f

ϕ defined by the quintuple(Q′,Σ,δ′,q0∩Q′,F ∩Q′), whereQ′ = Q−empty(Aϕ) and
δ′ is restricted toQ′×Σ. Note that this approach is not sound for liveness formulas.

Theorem 3. [4] A f
ϕ rejects precisely pre f(ϕ).

To model check a safety formula, we need an automaton that acceptspre f(ϕ) [31].
If we apply the subset construction toA f

ϕ we obtain a DFWAd
ϕ , where all nonempty sets

of states ofA f
ϕ are accepting states, that rejectspre f(ϕ). Its complementAd

¬ϕ, where
only the empty set of states is accepting, acceptspre f(ϕ).

3 NeverClaim Generation

A never claim is a Promela code sequence that defines a system behavior that should
never happen. Since we usenever claims to specify properties that shouldneverhap-
pen, that is, bad properties we wish to assert the system doesnot have, we createnever
claim corresponding to the negation of the property we wish to hold. In other words,
when we create anever claim that accepts exactlyL (¬ϕ) we are stating that it would
be a correctness violation of the system if there exists an execution sequence in which
¬ϕ holds. For the system to be considered correct,ϕ must always hold.

To generate a Promelanever claim for LTL formulaϕ, Spin translates¬ϕ into the
NBW A¬ϕ = (Q,Σ,δ,q0,F), enumerates and creates label for the states inQ, labelsq0

with ’init’ to designate the state in which thenever claim starts, labels accepting states
with ’accept,’ and implementsδ by a nondeterministic choice: for each state, nondeter-
ministically choose from among enabled transitions given the set of propositions true in
the current state. Currently, all LTL-to-Promela translators follow this high-level con-
struction. (They vary widely in the details of the formationofA¬ϕ as described in [27].)

In this paper, we construct Promelanever claims corresponding to the DFWAd
ϕ

for bad prefixes of safety formulas. We now describe several novel alternatives for con-
structingnever claims for safety properties.

To prove that a system modelM satisfies the LTL propertyϕ = (�good), we create
anever claim that accepts the negation of this property. Spin can dothis automatically
using the commandspin -f ’![] good’. Intuitively, thenever claim generated by

5

the formula would restrict system behavior to those states where(♦!good) holds. If any
such execution of the system is found, Spin reports a violation.

In addition to the infinite-behaviornever claims produced by Spin, SPOT, and other
tools,never claims can be also be used to specify finite automata; the distinction is
implicit in the structure of the claim rather than explicitly stated. A finite behavior
is matched if the claim can reach its closing curly brace while executing in lockstep
with the system model [13]. Spin automatically checks for this type ofnever claim
termination. Anever claim corresponding to the NFW that acceptspre f(ϕ) simply
needs to reach its closing curly brace, for example, when theformula is �good, if
!good is ever true, thus accepting the finite prefix indicating to a correctness violation
of the system. Note that we check the finite-behaviornever claim using different Spin
commands than the infinite-behavior version, where the run-time flag-a explicitly tells
Spin to check for acceptance cycles. Specifically, we check for finite acceptance using
the following commands:
cat Model > pan_in
cat finite_never_claim >> pan_in
spin -a pan_in
gcc -w -o pan -D_POSIX_SOURCE -DMEMLIM=1550 -DSAFETY -DXUSAFE -DNOFAIR

-DNXT pan.c
./pan -v -X -m10000 -w19 -A -E -c1

3.1 Determinization and Minimization

As in [31], there are two approaches to constructing the DFWAd
ϕ . First, we can explic-

itly determinize the NFWA f
ϕ using an NFW-to-DFW translator (BRICS Automaton[23]),

which we refer to as thedet construction. Second, we can construct anever claim
directly fromA f

ϕ , essentially performing the subset construction on-the-fly. For con-
sistancy with previous work [31], we refer to this as thenondet construction, because
determinism is delayed. The advantage of pre-compilation determinization is the abil-
ity to minimizeAd

ϕ before constructing thenever claim; we useBRICS Automaton
to produce a minimal equivalent DFW. We refer to this as themin construction. The
additional steps of determinization and minimization may incur a nontrivial computa-
tional cost during the construction of thenever claim. The trade-off between property-
compilation time and model checking time is a key issue in this paper.

To useBRICS Automaton, we have to find a way to represent the alphabet of the
automata [31]. SPOT labels transitions with Boolean formulas over the setProp of
atomic propositions, whileBRICS Automaton represents the alphabet of the automaton
as Unicode characters. Therefore, we adapt the techniques of [31] for describing the
alphabet in terms of 16-bit integers. We have two alphabet representations: OBDD-
based and assignment-based.

We can represent Boolean formulas usingOrdered Binary Decision Diagrams (OB-
DDs) [3]. We implement this approach as follows. First, we obtainreferences to all
Boolean formulas that appear as transition labels in the automaton using SPOT’sspot::
tgba reachable iterator breadth first::process link() function. Second, we
assign a unique integer label to the OBDD representation of each Boolean formula (up
to 2|ϕ| in the worst case) using SPOT’sspot::tgba succ iterator::current cond
ition() function. The formulas labeling automaton transitions cannow be replaced by
the corresponding integers.

6

Alternatively, we can represent Boolean formulas in terms of their satisfying truth
assignments. By selecting an order forProp= {p1, . . . , pn}, we can represent an as-
signment as ann-bit vectora = [a1,a2, . . . ,an]. Every such bit vector corresponds to an
integerI(a) in the domain{0, . . . ,2n−1}; I(a) = a12n−1+a22n−2+ . . .+an20. We can
use this domain as a new alphabet, replacing a transition labeled by a Boolean formula
α by several transitions labeled by the integers corresponding to truth assignments sat-
isfying α. Once we have usedBRICS Automaton to form a DFW, we convert transition
labels back to a Boolean formula that we use to construct Promelanever claims.

The assignment-based approach sometimes creates a large number of transitions.
For example, the Boolean formulatrue corresponds to 2n assignments. We introduce
an edge-abbreviationtechnique to merge separate transitions. When we have several
transitions with the same source and destination states, wecan remove these tran-
sitions and replace them by a single transition labeled by the disjunction of the la-
bels of the removed transitions. For each such disjunction,we utilize SPOT’s built-in
formula to bdd() function to create a BDD representing the disjunction, extract a
simplified formula from the BDD via the reversebdd to formula() function, and then
label the associated transition by this new formula. A related optimization is to replace
all else branches in the Promelanever claims by explicit Boolean formulas corre-
sponding to the negation of the conjunction of the labels of all of the other transitions
(reduced using SPOT’s built-in BDD functions). This enables us to eliminate redundant
trap states and reducenever claim code size.

3.2 Never claim encodings

Inspired by the work in [31], we introduce 26 ways of encodingautomata for safety
properties as Promelanever claims. We form these encodings by combining ournever
claim adaptations of the constructions for transition direction (front vs back), deter-
minism (det vsnondet), state minimization (min vsnomin), and alphabet representa-
tion (bdd vsabr) from [31] with the options to encodenever claim states either using
Promela state labels or integer state numbers (state vsnumber), to employ either finite
or infinite acceptance conditions (fin vs inf), and to reduce the size of the generated
never claim via edge abbreviation and trap-state elimination (ea). We illustrate our
encodings in Appendix A for benchmark safety formula 4 from Table 3.

Nondeterministic encodingsWe introduce 12 novel Promela encodings that perform
determinization on-the-fly. Innondet never claims we maintain an array used to de-
scribes sets of states ofA f

ϕ . An array that corresponds to an empty set indicates thatA
f

ϕ
got stuck, which means that we have discovered a violation ofϕ. We can encode the
transition relations either in afront fashion, where for any stateq we enumerate the
outgoing transitions fromq, or in aback fashion, where for any stateq we enumerates
the incoming transitions that lead toq.

Thefront nondet encoding uses anif statement to check each outgoing transition
from each possible current state and marks all possible nextstates in thenext state
array. If there is no possible next state, the automaton fails. Fornever claims with finite
acceptance conditions, this is accomplished by breaking from thedo loop and coming

7

to the end} of the claim. Theback nondet encoding works similarly, but the branching
is over incoming transitions rather than over outgoing transitions. See Listing 1.4 and
and 1.5 for examples.

Deterministic encodings In contrast tonondet encodings, where we determinize on
the fly, in det encodings we already have the states ofAd

ϕ and we can encode them
directly. We introduce 14 novel deterministic Promela encodings that presumeAd has
been minimized and determinized using assignment-based encoding. We use two ways
to encode the states. First, we can encode states by using Promela variable, whose value,
a (number), refers to the current states. Second, we can use Spin’s standard state-label
format coupled withgoto statements to transition between states. We illustrate each of
these two state representations in turn.

The back det encoding uses state numbers. Thenever claim first calculates the
system state index, the integer corresponding to the current valuation of the system
variables. Like itsback nondet counterpart, it transitions by checking for an enabled
incoming transition from the current state. Thefront det switch number fin encod-
ing uses a series ofif statements, the closest Promela construction to a C-likeswitch
statement, to check for enabled outgoing transitions from the current state. See List-
ing 1.6, Listings 1.7, and 1.8 for examples.

Alternatively, we can encode thenever claim without using any state numbers, by
taking advantage of Promela’s constructs for representingautomata states. Thefront
det switch state inf encoding transitions to program labels corresponding to the
names of the states inAd

ϕ . The initial state is labeled “init” and appears first, the
accepting state is labeled “accept,” and all other states are assigned unique names. See
Listings 1.9 and 1.9 for examples.

State
Minimization

Alphabet
Representation

Automaton
Acceptance

Never Claim
Encoding

State
Representation

no
BDDs

finite

infinite

front nondet

number

yes

back nondet

assignments

front nondet

back nondet

back det

front det memory table

front det switch
state

assignments
with edge

abbreviation

number

back det number

Table 1. The configuration space for generatingnever claims. Each row in the table represents
an encoding configuration. Componenets of the winning encoding are bolded.

Look-Up Tables The above encodings represent automaton transition functions as
if statements. Alternatively, we can declare a state look-up table in memory storing

8

the next state as a function of the current state and thesystem state index. This
forms very compactnever claims and the next state can be found in one operation. The
front det memory table encoding declares the table directly as a one-dimensional,
row-major array. See Listing 1.11 for an example.

Configuration space The different options allow 26 possible combinations for gener-
atingnever claims, summarized in Table 1.

4 Experimental Method

Platform We ran all tests on the Shared University Grid at Rice (SUG@R), an Intel
Xeon compute cluster.3 SUG@R is comprised of 134 SunFire x4150 nodes, each with
two quad-core Intel Xeon processors running at 2.83GHz and 16GB of RAM per pro-
cessor. The OS is Red Hat Enterprise 5 Linux, 2.6.18 kernel. Each test was run with
exclusive access to one node. Times were measured using the Unix time command.

4.1 Model-Scaling Benchmarks

We chose a set of 14 typical safety formulas, taken from related literature, listed in
Table 3. We model checked them against scaled linearly-sized Universal Models (UM)
from [27]. (See also Appendix B.) By scaling up the size of these UMs to dwarf the
sizes of the safety formulas, we create difficult model-checking benchmarks.

0 �¬bad “Something bad never happens.”
1 �(request→ Xgrant) “Every request is immediately fol-

lowed by a grant”
2 �(¬(p∧q)) Mutual Exclusion: “p and q can

never happen at the same time.”
3 �(p→ (XXXq)) “Always, p implies q will happen 3

time steps from now.”
4∗ X ((p∧q)R r) “Condition r must stay on until but-

tonsp andq are pressed at the same
time.”

5∗ X (�(p)) slightly modified intentionally safe
formula from [19]

6∗ X (�(q∨X�p)∧�(r ∨X�¬p)) slightly modified accidentally safe
formula from [19]

7∗ X ([�(q∨♦�p)∧�(r ∨♦�¬p)]∨�q∨�r) slightly modified pathologically
safeformula from [19]

8 �(p→ (q∧Xq∧XX q)) safety specification from [31]
9 (((((p0R (¬p1))R (¬p2))R (¬p3))R (¬p4))R (¬p5)) Sieve of Erathostenes [13, 21]

10 (�((p0∧¬p1) → (�¬p1∨ (¬p1U(p10∧¬p1))))) G.L. Peterson’s algorithm for mu-
tual exclusion algorithm [25, 22, 13,
24, 21]

3 http://rcsg.rice.edu/sugar/

9

11 (�(¬p0→ ((¬p1Up0)∨�¬p1))) CORBA General Inter-Orb Protocol
[17, 21]

12 ((�(p1 → �(¬p1 → (¬p0 ∧ ¬p1)))) ∧ (�(p2 →
�(¬p2→ (¬p0∧¬p1))))∧ (�¬p2∨ (¬p2Up1)))

GNU i-protocol, also called iprot [5,
24, 21]

13 ((�(p1 → �(¬p1 → (¬p0 ∧ ¬p1)))) ∧ (�(p2 →
�(¬p2→ (¬p0∧¬p1))))∧ (�¬p2∨ (¬p2Up1)))

Sliding Window protocol [16, 21]

Table 3. Industrial safety formulas used in model-scaling benchmarks.

For each of the formulas in Table 3, we model checked against aseries of linearly-sized UMs,
described in [27], starting with the 10-variable UM and scaling up the number of variables in
the model, thereby exponentially increasing its state space. We used two configurations of UMs;
starred formulas are checked against UMs that set all variables totrue first; see Appendix B.

4.2 Formula-Scaling Benchmarks

For our formula-scaling benchmarks, we model checked each formula against a universal model
with 30 variables and 1,073,741,824 states. We employed twotypes of formula-scaling bench-
marks: random and syntactically safe random. We scaled eachof the formulas until model check-
ing became unachievable within machine bounds of timeout/spaceout.

We generated two sets each of 500m-length safety specifications overn atomic propositions,
for m in {5,10,15,20,25} andn in {2..6} (25,000 random formulas in these two benchmark sets,
combined). The probability of each temporal operator wasP= 0.5. For the first set, we generated
syntactic safety formulas, allowing negation only directly before atomic propositions and limiting
the temporal operators to{X,G,R}. For the second set, we generated each specification randomly
over the full syntax of LTL. We then checked if the generated specification represented a safety
property using the SPOT commandltl2tgba -O, adding the specification to our test set if so
and rejecting it if not.

Test MethodWe encoded every benchmark LTL formula as a set of Promelanever claims
using SPOT and our novel encodings. We experimented with scheck [21] encodings; that tool
produced too many bugs to be included. However, it is reasonable to assume that the results would
not be comparable to our best encoding since the algorithm implemented by scheck constructs a
nondeterministic finite automaton from the restricted closure of the formula that accepts precisely
the informative prefixes of the formula and then determinizes as a last step without employing
optimizations that we found particularly influential, suchas minimization or edge abbreviation.
Eachnever claim, was model checked by Spin.4

We measured model checking time separately from the times for various compilation stages.
This is important for two reasons. It is relevant for regression testing and system debugging
applications where the system is repeatedly changed but model checked against the same specifi-
cations. It is also essential for demonstrating our claim that deterministic encoding of LTL safety
formulas can reduce model checking time; it is clear that we are not, for example, encoding LTL
formulas in a manner that compiles more quickly but requiresthe same or more time to model
check than the equivalent SPOT-encoding.

Figure 1 depicts the Spin model checking process. Unlike previous works, which report only
the total time required for analysis via Spin, we measure thetime required for compilation of

4 We also investigated using the SPOT back-end; SPOT is unableto analyze Promelanever
claims at the time of this writing.

10

AM,¬f

Promela

never claim
A¬f

M

C → binaryPromela → C Model

Check
EMPTY?

¬f

Fig. 1. System Diagram illustrating the Spin model checking process. We present an improved
encoding for the LTL formula¬ f to the Promelanever claim A¬ f .

LTL-to-never claim (by either SPOT or CHIMP-Spin),never claim-to-C (via thespin com-
mand), and C-to-binary (viagcc) separately. In the following plots, we refer to the sum of these
three times ascompile timeand separate this sum from frommodel checking time, or the time
required to run thepan executable produced by Spin. Because we ran SPOT as a step in the cre-
ation of each of our new encodings, the specification automaton generation times incurred by our
algorithm will always be greater than running SPOT alone. (It is important to note that our au-
tomaton generation times are consistently dwarfed by the corresponding model checking times.)
To streamline regression testing, we argue that future versions of Spin should not require us to
recompilenever claims for each run of the model checker, even when they have not changed.
Such an adjustment would more accurately reflect industrialapplications of model checking and,
combined with our reduced model checking times, reduce the amortized cost of model checking.

5 Experimental Results

Our experiments demonstrate that the new Promelanever claims we have introduced signifi-
cantly improve the translation of LTL safety formulas into explicit automata, as measured by
model checking time. We found that one of our encodings is always best:front det switch
min abr ea state fin. Using this encoding, we can consistently improve on the model check-

ing time required for SPOT encodings. We recommend using ourfront det switch min abr
ea state fin encoding for safety formulas and the standard SPOT encodingfor non-safety

formulas. (Recall that SPOT can test for safety formulas.)
We found certain encoding aspects to be always better. This helps explain why thefront

det switch min abr ea state fin encoding is always the fastest: it is the encoding that com-
bines all of the fastestnever claim components. We found the following trends to hold: de-
terministic (det) never claims are faster than determinized-on-the-fly (nondet) never claims;
finite acceptance (fin) is faster than infinite acceptance (inf); state labels (state) are faster than
state numbers (number); minimized automata (min) are faster than not (nomin); edge abbrevia-
tion (ea) always equates to better performance. Note that deterministic encoding (det) enables
faster features such as state minimization and edge abbreviation and that, all other encoding as-
pects being equal, there seems to be a positive correlation between the code size of a givennever
claim and the required model checking time, explaining the efficiency of this encoding. Also note
that the (front det switch) encoding enables the faster state labels representation (state).

11

5.1 Model-Scaling Experimental Results

number of propositions in the UM

m
od

el
-c

he
ck

in
g

ex
ec

ut
io

n
tim

e
(s

ec
)

25 26 27 28 29 30 31 32 33 34 35 36 37
0

5000

10000

15000

20000

25000

30000

35000

40000 SPOT
front_det_switch_min_abr_ea_state_fin
Deterministic Encodings

iprot Formula

(a) Benchmarks for the iprot specification (for-
mula 12).

number of propositions in the UM

m
od

el
-c

he
ck

in
g

ex
ec

ut
io

n
tim

e
(s

ec
)

25 26 27 28 29 30 31 32 33 34 35 36 37
0

5000

10000

15000

20000

25000

30000

35000

40000 SPOT
front_det_switch_min_abr_ea_state_fin
Deterministic Encodings

sliding_window Formula

(b) Benchmarks for the sliding window specifi-
cation (formula 13).

Fig. 2. Model scaling benchmarks, showing the model-checking times based on the number of
propositions in the UM.

Figure 2 demonstrates empirically that our deterministic automata require less time to model
check than SPOT’s nondeterministic automata. For some benchmarks, we found that all of our
encodings, whether they determinizedAd up front or on the fly, required less model checking time
than the equivalent nondeterministic SPOTnever claims.5 For example, for the iprot and sliding
window benchmarks, pictured in Figures 2(a) and 2(b), all ofour new encodings performed better
than SPOT, though ourfront det switch min abr ea state fin encoding was best. In these
figures, the SPOT encoding is shown in red, our best encoding is shown in purple, and our 25
other encodings are shown in magenta. Note also that these plots demonstrate the orthogonality
of automata size and model-checking time: all of our encodings represent the same automaton so
the differences in model-checking times in these graphs stem entirely from the type of encoding
and not the number of states in the automaton. Deterministicencodings can result in significant
improvements in model checking performance by reducing calls to the internal nested depth-first
search algorithm in the model checker; see Appendix A.1.

Figure 3 shows a speedup of a factor of two when using our best CHIMP-Spin encoding to
model check our 14-formula workload against a 34-variable UM. Since we terminated the plot
when the first benchmark formula exceeded machine bounds, this plot does not show instances
where our encoding was able to scale to larger model checkingbenchmarks than the equivalent
SPOT encoding. For example, Figure 2 demonstrates that our encoding was more scalable than
SPOT’s when model checking formulas 12 and 13.

Out of all of our benchmarks, the formula 4 benchmark displayed the smallest difference
between our encoding and SPOT. For the 36-variable universal model, the SPOTnever claim
took 4606.94 seconds, or roughly 77 minutes whereas ournever claim took 4281.22 seconds,
or roughly 71 minutes Still, ourfront det switch min abr ea state fin encoding encoding
enabled Spin to scale to model check a 40-variable model whereas model checking the SPOT
never claim timed out at 39 variables.

5 Note that not all SPOTnever claims are nondeterministic; for other benchmarks SPOT pro-
duced deterministicnever claims.

12

number of propositions in the UM

su
m

m
od

el
-c

he
ck

in
g

ex
ec

ut
io

n
tim

e
(s

ec
)

24 26 28 30 32 34
0

50000

100000

150000

200000

250000

SPOT
front_det_switch_min_abr_ea_state_fin

Model-Scaling Benchmark Workload

Fig. 3. Sums of the model-checking times for all model-scaling benchmark instances, based on
the number of propositions in the UM.

Since we call SPOT as a step in our encoding, our automaton generation times must always
be higher than SPOT but compile times were consistently dwarfed by model checking times. Our
total compile times were comparable to SPOT for our model-scaling benchmarks. For the set of
14 safety formulas in our workload, when model-checking against a 34-variable UM as shown in
Figure 3, the sum of our compile times was 6.01 seconds (that breaks down into a sum of LTL-to-
never claim times of 1.74 seconds, a sum of Promela-to-C times of 0.05 seconds, and a sum of
C-to-binary times of 4.22 seconds), while the sum of our model-checking times was 122662.78
seconds. For SPOT encodings, the sum of compile times was 4.53 seconds (including a sum of
LTL-to-never claim times of 0.14 seconds, a sum of Promela-to-C times of 0.06 seconds, and
a sum of C-to-binary times of 4.33 seconds) with a sum of model-checking times of 225132.7
seconds. Note that the unixtime command is not accurate to hundredths of a second so there is
a potential for some error contributions in these sums.

5.2 Formula-Scaling Experimental Results

Figures 4(a) and 4(b) show the sums of the model checking times of randomly-generated safety
formulas: completely randomly generated in Figure 4(a) andsyntactically safe in Figure 4(b).
Model checking times summed over all non-trivial randomly generated formulas for our best
encoding were significantly lower than for SPOT encodings.

Since we call SPOT as a step in our encoding, our automaton generation times were always
higher than SPOT but were consistently dwarfed by model checking times. This trend holds for
syntactically safe random formulas as well. See Figure 5.2.

BRICS Automaton experienced some errors when encoding some randomly generated for-
mulas. These were rare enough as to not significantly impact our timing results, i.e. for the set
of 500 5-variable, 15-length random formulas in Figure 4(a), BRICS Automaton experienced

13

Formula length

S
um

m
od

el
-c

he
ck

in
g

tim
e

(s
ec

)

5 10 15 20

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

75000

80000

85000

90000

95000

100000
SPOT
front_det_switch_min_abr_ea_state_fin

5 Variable Random Formulas

(a) Sum of model-checking times for 5 variable
random formula benchmark.

Formula length

S
um

m
od

el
-c

he
ck

in
g

tim
e

(s
ec

)

5 10 15 20
0

10000
20000
30000
40000
50000
60000
70000
80000
90000

100000
110000
120000
130000
140000
150000
160000
170000
180000
190000
200000

SPOT
front_det_switch_min_abr_ea_state_fin

6 Variable Syntactically Safe Random Formulas

(b) Sum of model-checking times for 6 variable
syntactically safe benchmark.

Fig. 4. Graphs of sums of model-checking times for both categories of randomly-generated for-
mulas, showing that our model checking times were consistently lower than SPOT.

nine errors. We summed data only for formulas where both the SPOT and CHIMP-Spin model
checking runs completed without an error or timeout.

The difference in model checking time is not directly correlated with other statistics we mea-
sured, such as the length of counterexamples returned for formula violations. Across all of the
randomly-generated formulas, we found that the number of states and the lengths of counterex-
amples associated with ourfront det switch min abr ea state fin never claims and with
SPOT’s were usually very close, within a few states of each other. In general, the number of
transitions had a higher variance between these two encodings; in the median cases, we ended up
with less than or equal to the number of transitions in the equivalent SPOTnever claim.

6 Discussion

In this paper we brought attention to the benefit of deterministic compilation for safety LTL prop-
erties. We defined novel encodings of safety LTL properties as deterministicnever claims and
showed that one encoding consistently leads to faster model-checking times than the state-of-
the-art SPOT encoding or any of our other new encodings. Therefore, we recommend a multiple-
pronged property-compilation approach to the Spin model checker: use SPOT for the compilation
of non-safety properties and use deterministic compilation with our newfront det switch min
abr ea state fin encoding for safety properties. This approach isextensible; different encod-

ings ofnever claims may be appropriate for different types of LTL formulas, see [29].
Determinizingnever claims for safety properties up front, rather than on-the-fly, seems to

have a major effect on model-checking performance. While either method of determinizing yields
better performance due to the simpler structure of the product search space, determinizing up front
enables the use of other optimizations that improve performance: state labels (rather than num-
bers), state minimization, edge abbreviation. There is also a consistent time savings associated
with model checking using finite acceptance conditions.

In general, deterministic compilation is more time consuming than nondeterministic compi-
lation due to the need to determinize and minimize, though this overhead is dwarfed by the im-

14

Formula length

S
um

co
m

pi
la

tio
n

tim
e

(s
ec

)

5 10 15 20
0

5

10

15

20

25

30

35
SPOT
front_det_switch_min_abr_ea_state_fin

5 Variable Random Formulas

(a) Sum of compilation times for 5 variable ran-
dom formula benchmark.

Formula length

S
um

co
m

pi
la

tio
n

tim
e

(s
ec

)

5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

55

60
SPOT
front_det_switch_min_abr_ea_state_fin

6 Variable Syntactically Safe Random Formulas

(b) Sum of compilation times for 6 variable syn-
tactically safe benchmark.

Fig. 5. Sums of compilation times for both categories of randomly-generated formulas, showing
that compilation times were dwarfed by model checking times. Note that the unixtime command
is not accurate to hundredths of a second; the times presented here may contain substantial error
contributions. These graphs simply show that the sum of compile times over all formulas in a test
set was always under a minute, for both SPOT and the best CHIMP-Spin encoding.

provements in model-checking time. Still, our experiment revealed theBRICS Automaton tool to
be a slow link in our tool chain; improving this link is a subject for future research. In particular,
we plan to investigate replacingBRICS Automaton via integrating related functions distributed
with SPOT. Also, for this paper we implemented our encoding as an extension of the CHIMP
tool. However, in the future we would like to implement our best encoding more efficiently rather
than relying on a modification of a tool created for a different purpose.

Finally, Kupferman and Lampert [18] developed an alternative approach to model checking
of safety properties, which involves the construction of a nondeterministic finite-word automaton
for bad prefixes. That approach may yield longer counterexamples, but it does not involve the
theoretical additional exponential blow-up that is involved in the approached pursued here. A
comparison with that approach is another subject for futureresearch.

References

1. B. Alpern and F.B. Schneider. Recognizing safety and liveness. Dist.Comp., 2:117–126,
1987.

2. R. Armoni, S. Egorov, R. Fraer, D. Korchemny, and M. Y. Vardi. Efficient LTL compilation
for SAT-based model checking. InICCAD, pages 877–884. IEEE, 2005.

3. R.E. Bryant. Symbolic Boolean manipulation with OrderedBinary-Decision Diagrams.
ACM Computing Surveys, 24(3):293–318, 1992.

4. M. d’Amorim and G. Rosu. Efficient monitoring ofω-languages. InCAV, pages 364–378,
2005.

5. Y. Dong, X. Du, G. J. Holzmann, and S. A. Smolka. Fighting livelock in the GNU i-protocol:
a case study in explicit-state model checking.STTT, 4(4):505–528, 2003.

6. A. Duret-Lutz and Denis Poitrenaud. SPOT: An extensible model checking library using
transition-based generalized Büchi automata. InMASCOTS, pages 76–83. IEEE, 2004.

15

7. C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. McIsaac, and D. Van Campenhout. Reason-
ing with temporal logic on truncated paths. InCAV, pages 27–39, 2003.

8. E.A. Emerson. Temporal and modal logic. InHandbook of Theoretical Computer Science,
volume B, chapter 16, pages 997–1072. Elsevier, MIT Press, 1990.

9. J. Geldenhuys and H. Hansen. Larger automata and less workfor LTL model checking. In
SPIN, volume 3925 ofLNCS, pages 53–70. Springer, 2006.

10. R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification of
Linear Temporal Logic. InPSTV, pages 3–18. Chapman & Hall, 1995.

11. K. Havelund and G. Rosu. Synthesizing monitors for safety properties. InTACAS, pages
342–356. Springer, 2002.

12. G.J. Holzmann. The model checker Spin.IEEE TSE, 23(5):279–295, May 1997.
13. G.J. Holzmann.The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley,

2003.
14. J.E. Hopcroft and J.D. Ullman.Introduction to Automata Theory, Languages, and Compu-

tation. Addison-Wesley, 1979.
15. L. Jategaonkar Jagadeesan, C. Puchol, and J. E. Von Olnhausen. Safety property verification

of ESTEREL programs and applications to telecommunications software. InCAV, volume
939 ofLNCS, pages 127–140. Springer, 1996.

16. R. Kaivola. Using compositional preorders in the verification of sliding window protocol. In
CAV, volume 1254 ofLNCS, pages 48–59. Springer, 1997.

17. M. Kamel and S. Leue. Validation of a remote object invocation and object migration in
CORBA GIOP using Promela/Spin. InSPIN, 1998.

18. O. Kupferman and R. Lampert. On the construction of fine automata for safety properties.
In ATVA, pages 110–124, 2006.

19. O. Kupferman and M.Y. Vardi. Model checking of safety properties.FMSD, 19(3):291–314,
Nov 2001.

20. O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak.ACM TOCL,
2(2):408–429, Jul 2001.

21. T. Latvala. Efficient model checking of safety properties. InSPIN, pages 74–88, 2003.
22. N. A. Lynch.Distributed Algorithms. Morgan Kaufmann Publishers Inc., 1996.
23. A. Møller. dk.brics.automaton. http://www.brics.dk/automaton/, 2004.
24. R. Pelánek. BEEM: benchmarks for explicit model checkers. InSPIN, pages 263–267, 2007.
25. G. L. Peterson. Myths about the mutual exclusion problem. Inf. Process. Lett., 12(3):115–

116, 1981.
26. E. Plaku, L. E. Kavraki, and M. Y. Vardi. Falsification of LTL safety properties in hybrid

systems. InTACAS, pages 368–382. Springer, 2009.
27. K.Y. Rozier and M.Y. Vardi. LTL satisfiability checking.International Journal on Software

Tools for Technology Transfer (STTT), 12(2):123 – 137, March 2010.
28. S. Safra. On the complexity ofω-automata. InFOCS, pages 319–327, 1988.
29. K. Schneider. Improving automata generation for lineartemporal logic by considering the

automaton hierarchy. InLPAR, pages 39–54, London, UK, 2001. Springer-Verlag.
30. R. Sebastiani and S. Tonetta. “more deterministic” vs. “smaller” Büchi automata for efficient

LTL model checking. InCHARME, volume 2860 ofLNCS, pages 126–140. Springer, 2003.
31. D. Tabakov, K. Y. Rozier, and M. Y. Vardi. Optimized temporal monitors for SystemC.

Formal Methods in System Design, page online, 2012.
32. M. Y. Vardi. From monadic logic to PSL. InPillars of Comp. Sci., volume 4800 ofLNCS,

pages 656–681. Springer, 2008.
33. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verifica-

tion. In Proc. 1st Symp. on Logic in Comp. Sci., pages 332–344, Cambridge, Jun 1986.
34. M.Y. Vardi and P. Wolper. Reasoning about infinite computations.Information and Compu-

tation, 115(1):1–37, Nov 1994.

16

Appendix A: Promela Code Examples

We show examples of our new Promela encodings of automata below.

A.1 Examples of the Winning Encoding:
front det switch min abr ea state fin

The encodings without edge abbreviation have as many as 2|Σ| transitions per state, sometimes
fewer if multiple valuations ofΣ lead to automaton acceptance. We can improve model-checking
performance ofnever claims fordet encodings utilizing state labels by abbreviating the transi-
tions. For finitenever claims, our edge abbreviation algorithm can take advantageof the Promela
semantics property that transitioning to a terminal error state and failing to find such a transi-
tion are equivalent. This enables us to further reduce the code size for finite-acceptancenever
claims by employing trap state elimination as we are abbreviating the edges. Thenever claim
for our winning encoding,front det switch min abr ea state fin, corresponding to bench-
mark formula 4 appears in Listing 1.1.

1 /*LTL formula: (!(X ((p0 & p1) R p2)))*/
2 never {
3 init_S2:
4 atomic {
5 if
6 :: (1) -> goto S0;
7 fi;
8 }
9 S0:

10 atomic {
11 if
12 :: (!p2) -> goto done;
13 :: ((!p0 && p2) || (!p1 && p2)) -> goto S0;
14 fi;
15 }
16 done: /*signal property violation by landing here*/
17 skip;
18 }

Listing 1.1. Illustrating thefront det switch min abr ea state fin never claim
encoding of the benchmark formula 4

Deterministic encodings can result in significant improvements in model checking perfor-
mance by reducing calls to the internal nested depth-first search algorithm in the model checker.
Take for example the following variant of benchmark formula6: �(q∨X�p)∧�(r ∨X�¬p).
The SPOT encoding for the correspondingnever claim appears in Listing 1.2. As we increase
the size of the universal model, the time required to model check thisnever claim increases
exponentially.

1 never { // F((!p1 & XF!p0) | (!p2 & XFp0))
2 T0_init:
3 if
4 :: (!(p2)) -> goto accept_S2
5 :: ((1)) -> goto T0_S3

17

6 :: (!(p1)) -> goto accept_S4
7 fi;
8 accept_S2:
9 if

10 :: ((p0)) -> goto accept_all
11 :: (!(p0)) -> goto T0_S6
12 fi;
13 T0_S3:
14 if
15 :: (!(p2)) -> goto accept_S2
16 :: ((1)) -> goto T0_S3
17 :: (!(p1)) -> goto accept_S4
18 fi;
19 accept_S4:
20 if
21 :: (!(p0)) -> goto accept_all
22 :: ((p0)) -> goto T0_S7
23 fi;
24 T0_S6:
25 if
26 :: ((p0)) -> goto accept_all
27 :: (!(p0)) -> goto T0_S6
28 fi;
29 T0_S7:
30 if
31 :: (!(p0)) -> goto accept_all
32 :: ((p0)) -> goto T0_S7
33 fi;
34 accept_all :
35 skip
36 }

Listing 1.2. Illustrating the SPOTnever claim for the originalaccidentally safefor-
mula from [19], which we modified to form our benchmark formula 6.

However, if we encode this samenever claim deterministically, the time required to model
check thisnever claim remains near zero as we increase the size of the universal model. For
comparison, thefront det switch min abr ea state fin encoding of the same formula from
Listing 1.2 appears in Listing 1.3. Examine the initial state,init S1, in Listing 1.3. In this case,
Spin initially explores the valuation where the variablesp0, p1, andp2 are false, in which case
this never claim transitions directly todone, causing Spin to skip the NDFS in the emptiness
check. It is the NDFS that causes the SPOTnever claim to require exponentially increasing time
to model check: note that the initial state in Listing 1.2 hasno equivalent deterministic path to
termination.

1 // LTL formula: (!([](p1 | (X [] p0)) & [](p2 | (X ([] ! p0)))))
2 never {
3 init_S1:
4 atomic {
5 if
6 :: (p2 && !p1) -> goto S2;

18

7 :: (p1 && p2) -> goto init_S1;
8 :: (p1 && !p2) -> goto S0;
9 :: else -> goto done;

10 fi;
11 }
12 S0:
13 atomic {
14 if
15 :: (p1 && !p0) -> goto S0;
16 :: else -> goto done;
17 fi;
18 }
19 S2:
20 atomic {
21 if
22 :: (p0 && p2) -> goto S2;
23 :: else -> goto done;
24 fi;
25 }
26 done: // signal property violation by landing here
27 skip;
28 }

Listing 1.3. Illustrating thefront det switch min abr ea state fin never claim
for the originalaccidentally safeformula from [19], which we modified to form our
benchmark formula 6.

A.2 Examples of Nondeterministic Encodings

1 /*LTL formula: (!(X ((p0 & p1) R p2)))*/
2 int i = 0;
3 bool not_stuck = false;
4
5 /*Declare state arrays; they are automatically initialized to 0*/
6 bool current_state [3];
7 bool next_state [3];
8 never {
9 /*This next line happens in time -1; one step before the first

10 step of the system model*/
11 next_state [2] = 1; /*initialize current to the initial state*/
12
13 do
14 :: atomic{
15 /*First, swap of current_state and next_state*/
16 i = 0;
17 do
18 :: (i < 3) ->
19 current_state [i] = next_state [i];
20 i++;

19

21 :: (i >= 3) -> break;
22 od;
23 /*reset next_state*/
24 i = 0;
25 do
26 :: (i < 3) ->
27 next_state [i] = 0;
28 i++;
29 :: (i >= 3) -> break;
30 od;
31 /*Second, fill in next_state array*/
32 if
33 :: current_state [2] ->
34 if
35 :: (1)
36 -> next_state [1] = 1;
37 :: else -> skip;
38 fi;
39 :: else -> skip;
40 fi;
41 if
42 :: current_state [0] ->
43 if
44 :: (1)
45 -> next_state [0] = 1;
46 :: else -> skip;
47 fi;
48 :: else -> skip;
49 fi;
50 if
51 :: current_state [1] ->
52 if
53 :: (p0 && p1 && p2)
54 -> next_state [0] = 1;
55 :: else -> skip;
56 fi;
57 if
58 :: ((p2 && !p0) || (p2 && !p1))
59 -> next_state [1] = 1;
60 :: else -> skip;
61 fi;
62 :: else -> skip;
63 fi;
64 /*Third, check if we’re stuck*/
65 i = 0;
66 not_stuck = false;
67 do
68 :: (i < 3) ->
69 not_stuck = not_stuck || next_state [i];
70 i++;

20

71 :: (i >= 3) -> break;
72 od;
73 if
74 :: (! not_stuck) -> break;
75 :: else -> skip;
76 fi;
77 }
78 od;
79 }

Listing 1.4. Illustrating thefront nondet nomin bdd number fin never claim en-
coding of formula 4. Note this encoding utilizes finite acceptance.

1 /* LTL formula: (!(X ((p0 & p1) R p2)))*/
2 int i = 0;
3
4 /*Declare state arrays
5 They are automatically initialized to 0*/
6 bool current_state [3];
7 bool next_state [3];
8 never {
9

10 S0_init: /*initialize current here*/
11 atomic {
12 current_state [0] = 1;
13 next_state [0] = 0;
14 next_state [1] = (current_state [2] && (p0 && p1 && p2)) ||
15 (current_state [1] && (1));
16 next_state [2] = (current_state [0] && (1)) ||
17 (current_state [2] && ((p2&&!p0)||(p2&&!p1)));
18
19 /* if any next state is enabled, loop */
20 /* Note that this if-statement will choose nondeterministically
21 from among the true guards, but that’s OK since multiple
22 guards go to the same place*/
23 if
24 :: next_state [0] -> goto S1;
25 :: next_state [1] -> goto S1;
26 :: next_state [2] -> goto S1;
27 :: else -> goto accept_all;
28 fi;
29 }
30
31 S1: /*loop here forever if property holds*/
32 atomic {
33 /*update: current_state = next_state*/
34 i = 0;
35 do
36 :: (i < 3) ->
37 current_state [i] = next_state [i];

21

38 i++;
39 :: (i >= 3) -> break;
40 od;
41
42 next_state [0] = 0;
43 next_state [1] = (current_state [2] && (p0 && p1 && p2)) ||
44 (current_state [1] && (1));
45 next_state [2] = (current_state [0] && (1)) ||
46 (current_state [2] && ((p2&&!p0)||(p2&&!p1)));
47
48 /* if any next state is enabled, loop */
49 if
50 :: next_state [0] -> goto S1;
51 :: next_state [1] -> goto S1;
52 :: next_state [2] -> goto S1;
53 :: else -> goto accept_all;
54 fi;
55 }
56
57 accept_all : /*signal property violation by omega-looping here*/
58 skip;
59 }

Listing 1.5. Illustrating theback nondet min bdd number inf encoding of formula
4. Note this encoding utilizes infinite acceptance.

A.3 Examples of Deterministic Encodings

1 /* LTL formula: (!(X ((p0 & p1) R p2)))*/
2 int current_state = 2;
3 int next_state = 2;
4 int system_state_index = 0;
5 never {
6 next_state = 2; /*initialize current to the initial state here*/
7
8 do
9 :: atomic {

10 current_state = next_state ; /*update state*/
11 next_state = -1; /*reset*/
12
13 /*Calculate the system state index*/
14 system_state_index = 0; /*reset*/
15 system_state_index =system_state_index + ((p0) -> (1 << 2):0);
16 system_state_index =system_state_index + ((p1) -> (1 << 1):0);
17 system_state_index =system_state_index + ((p2) -> (1 << 0):0);
18 if
19 :: (((current_state == 2) && (system_state_index == 5)) ||
20 ((current_state == 2) && (system_state_index == 7)) ||
21 ((current_state == 0) && (system_state_index == 1)) ||
22 ((current_state == 0) && (system_state_index == 5)) ||

22

23 ((current_state == 2) && (system_state_index == 6)) ||
24 ((current_state == 2) && (system_state_index == 0)) ||
25 ((current_state == 2) && (system_state_index == 3)) ||
26 ((current_state == 2) && (system_state_index == 4)) ||
27 ((current_state == 0) && (system_state_index == 3)) ||
28 ((current_state == 2) && (system_state_index == 1)) ||
29 ((current_state == 2) && (system_state_index == 2)))
30 -> next_state = 0;
31 :: (((current_state == 0) && (system_state_index == 7)) ||
32 ((current_state == 1) && (system_state_index == 0)) ||
33 ((current_state == 1) && (system_state_index == 1)) ||
34 ((current_state == 1) && (system_state_index == 2)) ||
35 ((current_state == 1) && (system_state_index == 3)) ||
36 ((current_state == 1) && (system_state_index == 4)) ||
37 ((current_state == 1) && (system_state_index == 5)) ||
38 ((current_state == 1) && (system_state_index == 6)) ||
39 ((current_state == 1) && (system_state_index == 7)))
40 -> next_state = 1;
41 :: else break;
42 fi;
43 }
44 od;
45 }

Listing 1.6. Illustrating theback det min abr number fin encoding of formula 4.

1 /* LTL formula: (!(X ((p0 & p1) R p2)))*/
2 int current_state = 2;
3 int next_state = 2;
4 int system_state_index = 0;
5 never {
6 next_state = 2; /*initialize current to the initial state here*/
7
8 do
9 :: atomic {

10 current_state = next_state ; /*update state*/
11 next_state = -1; /*reset*/
12
13 /*Calculate the system state index*/
14 system_state_index = 0; /*reset*/
15 system_state_index =system_state_index +((p0) -> (1 << 2):0);
16 system_state_index =system_state_index +((p1) -> (1 << 1):0);
17 system_state_index =system_state_index +((p2) -> (1 << 0):0);
18 if
19 :: (current_state == 2) ->
20 if
21 :: (system_state_index == 5)
22 -> next_state = 0;
23 :: (system_state_index == 7)
24 -> next_state = 0;

23

25 :: (system_state_index == 6)
26 -> next_state = 0;
27 :: (system_state_index == 0)
28 -> next_state = 0;
29 :: (system_state_index == 3)
30 -> next_state = 0;
31 :: (system_state_index == 4)
32 -> next_state = 0;
33 :: (system_state_index == 1)
34 -> next_state = 0;
35 :: (system_state_index == 2)
36 -> next_state = 0;
37 :: else break;
38 fi;
39 :: (current_state == 0) ->
40 if
41 :: (system_state_index == 7)
42 -> next_state = 1;
43 :: (system_state_index == 1)
44 -> next_state = 0;
45 :: (system_state_index == 5)
46 -> next_state = 0;
47 :: (system_state_index == 3)
48 -> next_state = 0;
49 :: else break;
50 fi;
51 :: (current_state == 1) ->
52 if
53 :: (system_state_index == 0)
54 -> next_state = 1;
55 :: (system_state_index == 1)
56 -> next_state = 1;
57 :: (system_state_index == 2)
58 -> next_state = 1;
59 :: (system_state_index == 3)
60 -> next_state = 1;
61 :: (system_state_index == 4)
62 -> next_state = 1;
63 :: (system_state_index == 5)
64 -> next_state = 1;
65 :: (system_state_index == 6)
66 -> next_state = 1;
67 :: (system_state_index == 7)
68 -> next_state = 1;
69 :: else break;
70 fi;
71 fi;
72 }
73 od;

24

74 }

Listing 1.7. Illustrating thefront det switch number fin never claim encoding of
formula 4.

1 /* LTL formula: (!(X ((p0 & p1) R p2)))*/
2 int current_state = 2;
3 int next_state = 2;
4 int system_state_index = 0;
5 never {
6
7 S0_init:/*initialize current here*/
8 atomic {
9 current_state = 2;

10
11 /*Calculate the system state index*/
12 system_state_index = 0; /*reset*/
13 system_state_index = system_state_index + ((p0) -> (1 << 2):0);
14 system_state_index = system_state_index + ((p1) -> (1 << 1):0);
15 system_state_index = system_state_index + ((p2) -> (1 << 0):0);
16 if
17 :: (system_state_index == 5)
18 -> next_state = 0; goto S1;
19 :: (system_state_index == 7)
20 -> next_state = 0; goto S1;
21 :: (system_state_index == 6)
22 -> next_state = 0; goto S1;
23 :: (system_state_index == 0)
24 -> next_state = 0; goto S1;
25 :: (system_state_index == 3)
26 -> next_state = 0; goto S1;
27 :: (system_state_index == 4)
28 -> next_state = 0; goto S1;
29 :: (system_state_index == 1)
30 -> next_state = 0; goto S1;
31 :: (system_state_index == 2)
32 -> next_state = 0; goto S1;
33 :: else
34 -> goto accept_stuck ;
35 fi;
36 }
37
38 S1: /*loop here forever if property holds*/
39 atomic {
40 current_state = next_state ; /*update state*/
41
42 /*Calculate the system state index*/
43 system_state_index = 0; /*reset*/
44 system_state_index = system_state_index + ((p0) -> (1 << 2):0);
45 system_state_index = system_state_index + ((p1) -> (1 << 1):0);

25

46 system_state_index = system_state_index + ((p2) -> (1 << 0):0);
47 if
48 :: (current_state == 2) ->
49 if
50 :: (system_state_index == 5)
51 -> next_state = 0; goto S1;
52 :: (system_state_index == 7)
53 -> next_state = 0; goto S1;
54 :: (system_state_index == 6)
55 -> next_state = 0; goto S1;
56 :: (system_state_index == 0)
57 -> next_state = 0; goto S1;
58 :: (system_state_index == 3)
59 -> next_state = 0; goto S1;
60 :: (system_state_index == 4)
61 -> next_state = 0; goto S1;
62 :: (system_state_index == 1)
63 -> next_state = 0; goto S1;
64 :: (system_state_index == 2)
65 -> next_state = 0; goto S1;
66 :: else
67 -> goto accept_stuck ;
68 fi;
69 :: (current_state == 0) ->
70 if
71 :: (system_state_index == 7)
72 -> next_state = 1; goto S1;
73 :: (system_state_index == 1)
74 -> next_state = 0; goto S1;
75 :: (system_state_index == 5)
76 -> next_state = 0; goto S1;
77 :: (system_state_index == 3)
78 -> next_state = 0; goto S1;
79 :: else
80 -> goto accept_stuck ;
81 fi;
82 :: (current_state == 1) ->
83 if
84 :: (system_state_index == 0)
85 -> next_state = 1; goto S1;
86 :: (system_state_index == 1)
87 -> next_state = 1; goto S1;
88 :: (system_state_index == 2)
89 -> next_state = 1; goto S1;
90 :: (system_state_index == 3)
91 -> next_state = 1; goto S1;
92 :: (system_state_index == 4)
93 -> next_state = 1; goto S1;
94 :: (system_state_index == 5)
95 -> next_state = 1; goto S1;

26

96 :: (system_state_index == 6)
97 -> next_state = 1; goto S1;
98 :: (system_state_index == 7)
99 -> next_state = 1; goto S1;

100 :: else
101 -> goto accept_stuck ;
102 fi;
103 fi;
104 }
105 accept_stuck : /*signal property violation by omega-looping here*/
106 skip;
107 }

Listing 1.8. Illustrating thefront det switch number inf never claim encoding of
formula 4. It employs the Promela acceptance-cycle acceptance condition.

1 /* LTL formula: (!(X ((p0 & p1) R p2)))*/
2 int system_state_index = 0;
3 never {
4
5 init_S2:
6 atomic {
7 system_state_index = 0; /*reset*/
8 system_state_index = system_state_index + ((p0) -> (1 << 2):0);
9 system_state_index = system_state_index + ((p1) -> (1 << 1):0);

10 system_state_index = system_state_index + ((p2) -> (1 << 0):0);
11 if
12 :: (system_state_index == 5)
13 -> goto S0;
14 :: (system_state_index == 7)
15 -> goto S0;
16 :: (system_state_index == 6)
17 -> goto S0;
18 :: (system_state_index == 0)
19 -> goto S0;
20 :: (system_state_index == 3)
21 -> goto S0;
22 :: (system_state_index == 4)
23 -> goto S0;
24 :: (system_state_index == 1)
25 -> goto S0;
26 :: (system_state_index == 2)
27 -> goto S0;
28 :: else
29 -> goto accept_stuck ;
30 fi;
31 }
32 S0:
33 atomic {
34 system_state_index = 0; /*reset*/

27

35 system_state_index = system_state_index + ((p0) -> (1 << 2):0);
36 system_state_index = system_state_index + ((p1) -> (1 << 1):0);
37 system_state_index = system_state_index + ((p2) -> (1 << 0):0);
38 if
39 :: (system_state_index == 7)
40 -> goto S1;
41 :: (system_state_index == 1)
42 -> goto S0;
43 :: (system_state_index == 5)
44 -> goto S0;
45 :: (system_state_index == 3)
46 -> goto S0;
47 :: else
48 -> goto accept_stuck ;
49 fi;
50 }
51 S1:
52 atomic {
53 system_state_index = 0; /*reset*/
54 system_state_index = system_state_index + ((p0) -> (1 << 2):0);
55 system_state_index = system_state_index + ((p1) -> (1 << 1):0);
56 system_state_index = system_state_index + ((p2) -> (1 << 0):0);
57 if
58 :: (system_state_index == 0)
59 -> goto S1;
60 :: (system_state_index == 1)
61 -> goto S1;
62 :: (system_state_index == 2)
63 -> goto S1;
64 :: (system_state_index == 3)
65 -> goto S1;
66 :: (system_state_index == 4)
67 -> goto S1;
68 :: (system_state_index == 5)
69 -> goto S1;
70 :: (system_state_index == 6)
71 -> goto S1;
72 :: (system_state_index == 7)
73 -> goto S1;
74 :: else
75 -> goto accept_stuck ;
76 fi;
77 }
78 accept_stuck : /*signal property violation by omega-looping here*/
79 skip;
80 }

Listing 1.9. Illustrating thefront det switch min abr state inf never claim en-
coding of formula 4. This version employs the Promela notionof states and the Promela
acceptance-cycle acceptance condition.

28

1 /* LTL formula: (!(X ((p0 & p1) R p2)))*/
2 int system_state_index = 0;
3 never {
4
5 init_S2:
6 atomic {
7 system_state_index = 0; /*reset*/
8 system_state_index = system_state_index + ((p0) -> (1 << 2):0);
9 system_state_index = system_state_index + ((p1) -> (1 << 1):0);

10 system_state_index = system_state_index + ((p2) -> (1 << 0):0);
11 if
12 :: (system_state_index == 5)
13 -> goto S0;
14 :: (system_state_index == 7)
15 -> goto S0;
16 :: (system_state_index == 6)
17 -> goto S0;
18 :: (system_state_index == 0)
19 -> goto S0;
20 :: (system_state_index == 3)
21 -> goto S0;
22 :: (system_state_index == 4)
23 -> goto S0;
24 :: (system_state_index == 2)
25 -> goto S0;
26 :: (system_state_index == 1)
27 -> goto S0;
28 :: else -> goto done;
29 fi;
30 }
31 S0:
32 atomic {
33 system_state_index = 0; /*reset*/
34 system_state_index = system_state_index + ((p0) -> (1 << 2):0);
35 system_state_index = system_state_index + ((p1) -> (1 << 1):0);
36 system_state_index = system_state_index + ((p2) -> (1 << 0):0);
37 if
38 :: (system_state_index == 7)
39 -> goto S1;
40 :: (system_state_index == 1)
41 -> goto S0;
42 :: (system_state_index == 5)
43 -> goto S0;
44 :: (system_state_index == 3)
45 -> goto S0;
46 :: else -> goto done;
47 fi;
48 }
49 S1:
50 atomic {

29

51 system_state_index = 0; /*reset*/
52 system_state_index = system_state_index + ((p0) -> (1 << 2):0);
53 system_state_index = system_state_index + ((p1) -> (1 << 1):0);
54 system_state_index = system_state_index + ((p2) -> (1 << 0):0);
55 if
56 :: (system_state_index == 0)
57 -> goto S1;
58 :: (system_state_index == 1)
59 -> goto S1;
60 :: (system_state_index == 2)
61 -> goto S1;
62 :: (system_state_index == 3)
63 -> goto S1;
64 :: (system_state_index == 4)
65 -> goto S1;
66 :: (system_state_index == 5)
67 -> goto S1;
68 :: (system_state_index == 6)
69 -> goto S1;
70 :: (system_state_index == 7)
71 -> goto S1;
72 :: else -> goto done;
73 fi;
74 }
75 done: /*signal property violation by landing here*/
76 skip;
77 }

Listing 1.10. Illustrating thefront det switch min abr state fin never claim en-
coding of formula 4.

1 /* LTL formula: (!(X ((p0 & p1) R p2)))*/
2 int current_state = 0;
3 int next_state = 0;
4 int system_state_index = 0;
5 int table[24];
6 never {
7
8 S0_init:/*initialize current here*/
9 atomic {

10 table[0] = 2; table[1] = 2; table[2] = 2; table[3] = 2;
11 table[4] = 2; table[5] = 2; table[6] = 2; table[7] = 2;
12 table[8] = 1; table[9] = 1; table[10] = 1; table[11] = 1;
13 table[12] = 1; table[13] = 1; table[14] = 1; table[15] = 1;
14 table[16] = -1; table[17] = 2; table[18] = -1; table[19] = 2;
15 table[20] = -1; table[21] = 2; table[22] = -1; table[23] = 1;
16
17 /*Calculate the system state index*/
18 system_state_index = 0; /*reset*/
19 system_state_index = system_state_index + ((p0) -> (1 << 2):0);

30

20 system_state_index = system_state_index + ((p1) -> (1 << 1):0);
21 system_state_index = system_state_index + ((p2) -> (1 << 0):0);
22
23 /*Lookup the next state in the table*/
24 next_state = table[current_state * 8 + system_state_index];
25 if
26 :: (next_state == -1) -> goto accept_stuck ;
27 :: else -> goto S1;
28 fi;
29 }
30
31 S1: /*loop here forever if property holds*/
32 atomic {
33 current_state = next_state ; /*update state*/
34 next_state = -1; /*reset*/
35
36 /*Calculate the system state index*/
37 system_state_index = 0; /*reset*/
38 system_state_index = system_state_index + ((p0) -> (1 << 2):0);
39 system_state_index = system_state_index + ((p1) -> (1 << 1):0);
40 system_state_index = system_state_index + ((p2) -> (1 << 0):0);
41
42 /*Lookup the next state in the table*/
43 next_state = table[current_state * 8 + system_state_index];
44 if
45 :: (next_state == -1) -> goto accept_stuck ;
46 :: else -> goto S1;
47 fi;
48 }
49
50 accept_stuck : /*signal property violation by omega-looping here*/
51 skip;
52 }

Listing 1.11. Illustrating thefront det memory table min abr inf encoding of for-
mula 4.

31

Appendix B: Universal Model from [27]

For each of the formulas in our benchmark sets we model check against univeral models that
are linearly-sized in the number of atomic propositions as,described in [27]. For formula-scaling
benchmarks we use a universal model with 30 variables and formodel-scaling benchmarks we
use a series of universal models starting with the 10-variable model and scaling up the number of
variables in the model, thereby exponentially increasing its state space.

For all benchmarks, our universal system model is a Promela program that explicitly enu-
merates all possible evaluations overProp and employs nondeterministic choice to pick a new
valuation at each time step. For example, whenProp= {p,q}, the Promela model is:

bool p,q;
active proctype generateValues()
{
do
:: atomic{

if
:: true -> p = 0;
:: true -> p = 1;

fi;
if

:: true -> q = 0;
:: true -> q = 1;

fi;
}
od

}

Starred formulas are checked against universal models thatset all variables totrue
first like this:

bool p,q;
active proctype generateValues()
{ do

:: atomic{
if

:: true -> p = 1;
:: true -> p = 0;

fi;
if

:: true -> q = 1;
:: true -> q = 0;

fi; }
od }

32

